
1

S620 - Introduction To Statistical Theory - Homework 3

Enrique Areyan
February 6, 2014

[S420] Complete Exercises 2.2, 2.3, and 2.4.

(2.2) Setup:

Θ = {1, 2}. θ = 1 denote that the guard I question is a Wizard; let θ = 2 the guard I question is a Muggle.

X = {0, 1}, where x = 0 is the answer no to the question Are you a Wizard? and x = 1 is the answer yes.

P1(0) = 0, P1(1) = 1;P2(0) = 2/3, P2(1) = 1/3

A = {1, 2}, where 1 = choose the guard I question and 2 = choose the guard I don’t question.

L(1, 1) = 0, L(1, 2) = 1;L(2, 1) = 1, L(2, 2) = 0, here 1 = 1000 galleons.

1) Write down an exhaustive set of non-randomized decision rules and, by drawing the associated risk set, de-
termine the minimax decision rule.

The following are an exhaustive set of non-randomized decision rules:

d1(x) = 1, choose the guard I question always
d2(x) = 2, choose the guard I dont question always

d3(x) =

{
1 if x = 0, disregard the guard’s response
2 if x = 1

d4(x) =

{
1 if x = 1, follow the guard’s response
2 if x = 0

Now we can compute the risk associated with each rule (note that I will use 1 to denote a loss of 1000
galleons):

R(1, d1) = E1L(1, d1) = P1(0)L(1, d1(0)) + P1(1)L(1, d1(1)) = 0 · 0 + 1 · 0 = 0

R(2, d1) = E2L(2, d1) = P2(0)L(2, d1(0)) + P2(1)L(2, d1(1)) = 2
3 · 1 + 1

3 · 1 = 1

R(1, d2) = E1L(1, d2) = P1(0)L(1, d2(0)) + P1(1)L(1, d2(1)) = 0 · 1 + 1 · 1 = 1

R(2, d2) = E2L(2, d2) = P2(0)L(2, d2(0)) + P2(1)L(2, d2(1)) = 2
3 · 0 + 1

3 · 0 = 0

R(1, d3) = E1L(1, d3) = P1(0)L(1, d3(0)) + P1(1)L(1, d3(1)) = 0 · 0 + 1 · 1 = 1

R(2, d3) = E2L(2, d3) = P2(0)L(2, d3(0)) + P2(1)L(2, d3(1)) = 2
3 · 1 + 1

3 · 0 = 2
3

R(1, d4) = E1L(1, d4) = P1(0)L(1, d4(0)) + P1(1)L(1, d4(1)) = 0 · 1 + 1 · 0 = 0

R(2, d4) = E2L(2, d4) = P2(0)L(2, d4(0)) + P2(1)L(2, d4(1)) = 2
3 · 0 + 1

3 · 1 = 1
3

Hence, we have the points in the (R1, R2), i.e., (risk when θ = 1, risk when θ = 2)-plane:

d1 = (0, 1) d2 = (1, 0) d3 = (1, 2
3 ) d4 = (0, 1

3 )

The associated risk set is:
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Right away we can see that rules d1 and d3 are inadmissible. In fact, the collection of admissible (including
randomized and nonrandomized decision rules), corresponds to the points on the lower left-hand bound-
ary (represented by the thick line) in the previous graph. Now, we can compute the minimax rule within
the collection of nonrandomized decision rules, i.e., min{max{R(1, d2), R(2, d2)},max{R(1, d4), R(2, d4}} =
min{max{1, 0},max{0, 1/3}} = min{1, 1/3} = 1/3, corresponding to rule d4. This makes intuitive sense: in
absence of any other information we should follow the guard’s response as a conservative strategy. However,
if we were to include randomized decision rules, then our minimax rule will change as shown in the following
graph:

The intersection of the line R1 = R2 with the lower left-hand boundary of our risk set is at the point (1/4, 1/4).

2) Let the prior probability be 2/3 that the guard being asked is indeed a Wizard. What is the Bayes decision
rule?
Let us compute the Bayes risk for each rule:

r(π, d1) = 2
3R(1, d1) + 1

3R(2, d1) = 1/3
r(π, d2) = 2

3R(1, d2) + 1
3R(2, d2) = 2/3

r(π, d3) = 2
3R(1, d3) + 1

3R(2, d3) = 8/9

r(π, d4) = 2
3R(1, d4) + 1

3R(2, d4) = 1/9 ⇒ d4 is the Bayes rule with respect to prior ψ = 2/3

Again, this makes intuitive sense. Since we have a suspicious that the guard being asked is the Wizard, it
makes sense to follow his directions, i.e., apply rule d4. We can also see this graphically by plotting the Bayes
level curve that intersects the risk set S with prior 2/3, i.e., 2

3R1 + 1
3R2 = 1

9 (dashed line in the following
graph:)
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(2.3) Setup

Θ = {0, 1}. θ = 0 there will not be snow tomorrow; θ = 1 there will be snow tomorrow.

X = {0, 1, 2}, where x denote the number of radio stations that forecast snow.

P0(0) = 1/4, P0(1) = 2/4, P0(2) = 1/4;P1(0) = 1/16, P1(1) = 6/16, P1(2) = 9/16

A = {0, 1}, where 0 = don’t close school and 1 = close school.

L(0, 0) = 0, L(0, 1) = 1;L(1, 0) = 2, L(1, 1) = 1

1) Write down an exhaustive set of non-randomized decision rules based on x.

The following are an exhaustive set of non-randomized decision rules:

d1(x) = 0, never close school

d3(x) =


0 if x = 0

1 if x = 1

1 if x = 2

d5(x) =


1 if x = 0

1 if x = 1

0 if x = 2

d7(x) =


0 if x = 0

1 if x = 1

0 if x = 2

d2(x) = 1, always close school

d4(x) =


1 if x = 0

0 if x = 1

1 if x = 2

d6(x) =


0 if x = 0

0 if x = 1

1 if x = 2

d8(x) =


1 if x = 0

0 if x = 1

0 if x = 2

2) Find the superintendent’s admissible decision rules, and his minimax rule.
First, let us compute the risk associated with each rule:

R(0, d1) = E0L(0, d1) = P0(0)L(0, d1(0)) + P0(1)L(0, d1(1)) + P0(2)L(0, d1(2)) = 1
4 · 0 + 1

2 · 0 + 1
4 · 0 = 0

R(1, d1) = E1L(1, d1) = P1(0)L(1, d1(0)) + P1(1)L(1, d1(1)) + P1(2)L(1, d1(2)) = 1
16 · 2 + 3

8 · 2 + 9
16 · 2 = 2

R(0, d2) = E0L(0, d2) = P0(0)L(0, d2(0)) + P0(1)L(0, d2(1)) + P0(2)L(0, d2(2)) = 1
4 · 1 + 1

2 · 1 + 1
4 · 1 = 1

R(1, d2) = E1L(1, d2) = P1(0)L(1, d2(0)) + P1(1)L(1, d2(1)) + P1(2)L(1, d2(2)) = 1
16 · 1 + 3

8 · 1 + 9
16 · 1 = 1

R(0, d3) = E0L(0, d3) = P0(0)L(0, d3(0)) + P0(1)L(0, d3(1)) + P0(2)L(0, d3(2)) = 1
4 · 0 + 1

2 · 1 + 1
4 · 1 = 3

4

R(1, d3) = E1L(1, d3) = P1(0)L(1, d3(0)) + P1(1)L(1, d3(1)) + P1(2)L(1, d3(2)) = 1
16 · 2 + 3

8 · 1 + 9
16 · 1 = 17

16

R(0, d4) = E0L(0, d4) = P0(0)L(0, d4(0)) + P0(1)L(0, d4(1)) + P0(2)L(0, d4(2)) = 1
4 · 1 + 1

2 · 0 + 1
4 · 1 = 1

2

R(1, d4) = E1L(1, d4) = P1(0)L(1, d4(0)) + P1(1)L(1, d4(1)) + P1(2)L(1, d4(2)) = 1
16 · 1 + 3

8 · 2 + 9
16 · 1 = 11

8

R(0, d5) = E0L(0, d5) = P0(0)L(0, d5(0)) + P0(1)L(0, d5(1)) + P0(2)L(0, d5(2)) = 1
4 · 1 + 1

2 · 1 + 1
4 · 0 = 3

4

R(1, d5) = E1L(1, d5) = P1(0)L(1, d5(0)) + P1(1)L(1, d5(1)) + P1(2)L(1, d5(2)) = 1
16 · 1 + 3

8 · 1 + 9
16 · 2 = 25

16

R(0, d6) = E0L(0, d6) = P0(0)L(0, d6(0)) + P0(1)L(0, d6(1)) + P0(2)L(0, d6(2)) = 1
4 · 0 + 1

2 · 0 + 1
4 · 1 = 1

4

R(1, d6) = E1L(1, d6) = P1(0)L(1, d6(0)) + P1(1)L(1, d6(1)) + P1(2)L(1, d6(2)) = 1
16 · 2 + 3

8 · 2 + 9
16 · 1 = 23

16

R(0, d7) = E0L(0, d7) = P0(0)L(0, d7(0)) + P0(1)L(0, d7(1)) + P0(2)L(0, d7(2)) = 1
4 · 0 + 1

2 · 1 + 1
4 · 0 = 1

2

R(1, d7) = E1L(1, d7) = P1(0)L(1, d7(0)) + P1(1)L(1, d7(1)) + P1(2)L(1, d7(2)) = 1
16 · 2 + 3

8 · 1 + 9
16 · 2 = 13

8

R(0, d8) = E0L(0, d8) = P0(0)L(0, d8(0)) + P0(1)L(0, d8(1)) + P0(2)L(0, d8(2)) = 1
4 · 1 + 1

2 · 0 + 1
4 · 0 = 1

4

R(1, d8) = E1L(1, d8) = P1(0)L(1, d8(0)) + P1(1)L(1, d8(1)) + P1(2)L(1, d8(2)) = 1
16 · 1 + 3

8 · 2 + 9
16 · 2 = 31

16

Hence, we have the points in the (R1, R2), i.e., (risk when θ = 0, risk when θ = 1)-plane:

d1 = (0, 2) d2 = (1, 1) d3 = ( 3
4 ,

17
16 ) d4 = ( 1

2 ,
11
8 )

d5 = ( 3
4 ,

25
16 ) d6 = ( 1

4 ,
23
16 ) d7 = ( 1

2 ,
13
8 ) d8 = ( 1

4 ,
31
16 )

By looking at the next graph we can conclude that d8, d7, d4 and d5 are inadmissible. In fact, the collection of
admissible (including randomized and nonrandomized decision rules), corresponds to the points on the lower
left-hand boundary (represented by the thick line) in the next graph. The graph also shows the minimax rule
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(red x) if we consider the set of all rules. The minimax rule is d2.

3) Before listening to the forecasts, he believes there will be snow with probability 1/2; find the Bayes rule with
respect to this prior.
Let us compute the Bayes risk for each rule:

r(π, d1) = 1
2R(0, d1) + 1

2R(1, d1) = 1
r(π, d2) = 1

2R(0, d2) + 1
2R(1, d2) = 1

r(π, d3) = 1
2R(0, d3) + 1

2R(1, d3) = 29/32
r(π, d4) = 1

2R(0, d4) + 1
2R(1, d4) = 15/16

r(π, d5) = 1
2R(0, d5) + 1

2R(1, d5) = 37/32

r(π, d6) = 1
2R(0, d6) + 1

2R(1, d6) = 27/32 ⇒ d6 is the Bayes rule with respect to prior ψ = 1/2

r(π, d7) = 1
2R(0, d7) + 1

2R(1, d7) = 17/16
r(π, d8) = 1

2R(0, d8) + 1
2R(1, d8) = 35/32

This result makes intuitive sense because if we believe there is equal chance of snow, then we will be better off
closing the school having at least two radio station confirm that believe. Moreover, the next graph confirm
that this rule is also the Bayes rule within the set of all decision rules:
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(2.4) Setup:

Θ = {0, 1}. θ = 0 denote that the component is not functioning; let θ = 1 otherwise.

X = {0, 1}, where x = 0 denotes warning light off and x = 1 warning light on.

P0(0) = 1/3, P0(1) = 2/3;P1(0) = 3/4, P1(1) = 1/4

A = {0, 1}, where 0 = don’t launch 1 = go ahead with launch.

L(0, 0) = 0, L(0, 1) = 10;L(1, 0) = 5, L(1, 1) = 0. Units in billions of dollars.

1) First, let us do the same analysis as before in this case: The following are an exhaustive set of non-randomized
decision rules:

d1(x) = 0, always stop launch
d2(x) = 1, always go on with launch

d3(x) =

{
0 if x = 0, disregard the warning light
1 otherwise

d4(x) =

{
0 if x = 1, follow the warning light
1 otherwise

Now we can compute the risk associated with each rule:

R(0, d1) = E0L(0, d1) = P0(0)L(0, d1(0)) + P0(1)L(0, d1(1)) = 1
3 · 0 + 2

3 · 0 = 0

R(1, d1) = E1L(1, d1) = P1(0)L(1, d1(0)) + P1(1)L(1, d1(1)) = 3
4 · 5 + 1

4 · 5 = 5

R(0, d2) = E0L(0, d2) = P0(0)L(0, d2(0)) + P0(1)L(0, d2(1)) = 1
3 · 10 + 2

3 · 10 = 10

R(1, d2) = E1L(1, d2) = P1(0)L(1, d2(0)) + P1(1)L(1, d2(1)) = 3
4 · 0 + 1

4 · 0 = 0

R(0, d3) = E0L(0, d3) = P00L(0, d30) + P0(1)L(0, d3(1)) = 1
3 · 0 + 2

3 · 10 = 20
3

R(1, d3) = E1L(1, d3) = P1(0)L(1, d3(0)) + P1(1)L(1, d3(1)) = 3
4 · 5 + 1

4 · 0 = 15
4

R(0, d4) = E0L(0, d4) = P0(0)L(0, d4(0)) + P0(1)L(0, d4(1)) = 1
3 · 10 + 2

3 · 0 = 10
3

R(1, d4) = E1L(1, d4) = P1(0)L(1, d4(0)) + P1(1)L(1, d4(1)) = 3
4 · 0 + 1

4 · 5 = 5
4

Hence, we have the points in the (R0, R1), i.e., (risk when θ = 0, risk when θ = 1)-plane: The associated risk
set is:

d1 = (0, 5) d2 = (10, 0) d3 = ( 20
3 ,

15
4 ) d4 = ( 10

3 ,
5
4 )

The associated risk set is:

Thus, the only admissible rules are d1, d2, d4, with d4 being the minimax rule within the set of non-randomized
decision rules. This makes sense because we would follow the warning light by using decision rule d4. This
would be the conservative approach.
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2) Suppose the prior probability that the component is not functioning is ψ = 2/5. If the warning light does
not go on, what is the decision according to the Bayes rule?
Let us compute what the Bayes rule would be:

r(π, d1) = 2
5R(0, d1) + 3

5R(1, d1) = 3
r(π, d2) = 2

5R(0, d2) + 3
5R(1, d2) = 4

r(π, d3) = 2
5R(0, d3) + 3

5R(1, d3) = 59/12

r(π, d4) = 2
5R(0, d4) + 3

5R(1, d4) = 25/12 minimizes Bayes risk, i.e., bayes rule.

Hence, the Bayes rule is d4, and if the warning light does not go on we decide: d4(0) = 1, to go on with the
launch. We can plot this information (dashed line):

3) For what values of the prior probability ψ is the Bayes decision to launch the rocket, even if the warning light
comes on?
Note that the only decisions rules that launch the rocket, even if the warning light comes on, are d2, d3.
However, rule d3 is inadmissible since it is strictly dominated by d4. By Theorem 2.3, we known that the
Bayes rule we seek must be admissible and hence, the only candidate is d2. So our original problem reduces
to finding the values of ψ for which d2 is the Bayes rule.

Now, if ψ = 0, then the Bayes rule is d2 since the Bayes level curve becomes R1 = c, and picking c = 0 the
Bayes curve intersects the risk set at d2 (through R1-axis). This will be the case up to the point where the
Bayes curve coincides with the line joining d4 and d2. So, we want to find the value of ψ just before that
happens.
We know the form of a Bayes curve: ψR0 + (1− ψ)R1 = c. We need to solve for the curve that connects d2

and d4, i.e., that contains the points d2 = [R(0, d2), R(1, d2)] and d4 = [R(0, d4), R(1, d4)]. We proceed:

ψ 10
3 + (1− ψ) 5

4 = c
ψ10 + (1− ψ)0 = c ⇒ c = 10ψ

Replacing c = 10ψ in the first equation: ψ 10
3 + (1− ψ) 5

4 = 10ψ ⇒ ( 10
3 −

5
4 − 10)ψ = − 5

4 ⇒ ψ = 3
19 .

Hence, for ψ ∈ [0, 3/19) the Bayes rule is d2 and we choose to launch the rocket, even if the warning light
comes on.
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[S620]

1) Prove Theorem 2.4.: If a Bayes rule is unique, it is admissible.

Proof: (by Contradition). Let dπ be the unique Bayes rule with respect to the prior distribution π. Suppose
that dπ is inadmissible. By definition of inadmissibility, there exists another rule d ∈ D such that d � dπ,
i.e.,

R(θ, d) ≤ R(θ, dπ) for every θ ∈ Θ, and R(θ, d) < R(θ, dπ), for at least one θ ∈ Θ

Now, since π is a probability distribution on Θ we know that π(θ) ≥ 0 for every θ ∈ Θ. Hence,

R(θ, d)π(θ) ≤ R(θ, dπ)π(θ), for every θ ∈ Θ

Summing (integrating) over all states of nature θ ∈ Θ, we get that:∫
Θ

R(θ, d)π(dθ) ≤
∫
Θ

R(θ, dπ)π(dθ) ⇐⇒ r(π, d) ≤ r(π, dπ), by definition of Bayes risk

We can analyze the last inequality by cases:

1) r(π, d) < r(π, dπ) =⇒ d has lower Bayes risk than dπ, a contradiction since dπ is Bayes.

2) r(π, d) = r(π, dπ) =⇒ d has the same risk as dπ, so d is Bayes, a contradiction since dπ is the unique
Bayes rules for this π.

In any case we reach a contradiction. Therefore, dπ is admissible.

2) Exercise 2.8, part (ii):
In a Bayes decision problem, a prior distribution π is said to be least favourable if rπ ≥ rπ′ , for all prior
distributions π′, where rπ denotes the Bayes risk of the Bayes rule dπ with respect to π.
Suppose that π is a prior distribution, such that∫

R(θ, dπ)π(θ)dθ = sup
θ
R(θ, dπ).

Show that π is least favourable.

Proof: Let π∗ be an arbitrary prior distribution. Let π be the prior with the given property. Then:

r(π∗, dπ∗) =
∫
Θ

R(θ, dπ∗)π
∗(θ)dθ by definition of Bayes risk

≤
∫
Θ

R(θ, dπ)π∗(θ)dθ since dπ∗ is the Bayes rule with respect to π∗

≤ sup
θ
R(θ, dπ) since π∗ is a probability distribution (∗∗)

=
∫
Θ

R(θ, dπ)π(θ)dθ by hypothesis

= r(π, dπ) by definition of Bayes risk

Hence, r(π∗, dπ∗) ≤ r(π, dπ) ⇐⇒ rπ ≥ rπ∗ , showing the result.

To see why (∗∗) holds, consider the following argument: we know, by definition of sup., that:
supθ R(θ, d) ≥ R(θ, d) for every θ ∈ Θ. Now multiply by π(θ) each side. Since π(θ) ≥ 0 (a prob. dis-
trib.) the inequality does not change: π(θ) supθ R(θ, d) ≥ π(θ)R(θ, d) now sum (integrate) over all values:∫
π(θ) supθ R(θ, d)dθ ≥

∫
π(θ)R(θ, d)dθ. But supθ R(θ, d) is a constant on the left integral. The other term

adds up to one, so we get the result: supθ R(θ, d) ≥
∫
π(θ)R(θ, d)dθ


